Skip to content

plt.hist() fails with TensorFlow Numpy emulation #19574

Open
@FlorinAndrei

Description

@FlorinAndrei

Bug report

Bug summary

Generating np.random.randn(1000) values, visualizing them with plt.hist(). Works fine with Numpy.

When I replace Numpy with tensorflow.experimental.numpy, Matplotlib 3.3.4 fails to display the histogram correctly. Matplotlib 3.2.2 works fine.

Code for reproduction

import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
import tensorflow.experimental.numpy as tnp

# bad image
labels1 = 15 + 2 * tnp.random.randn(1000)
_ = plt.hist(labels1)

# good image
labels2 = 15 + 2 * np.random.randn(1000)
_ = plt.hist(labels2)

Actual outcome

np-bad

Expected outcome

np-good

Matplotlib version

  • Operating system: Windows 10
  • Matplotlib version (import matplotlib; print(matplotlib.__version__)): 3.3.4
  • Matplotlib backend (print(matplotlib.get_backend())): module://ipykernel.pylab.backend_inline
  • Python version: 3.8.7
  • Jupyter version (if applicable): see below
  • Other libraries: see below

TensorFlow 2.4.1

jupyter --version
jupyter core     : 4.7.0
jupyter-notebook : 6.1.6
qtconsole        : 5.0.1
ipython          : 7.20.0
ipykernel        : 5.4.2
jupyter client   : 6.1.7
jupyter lab      : not installed
nbconvert        : 6.0.7
ipywidgets       : 7.6.3
nbformat         : 5.0.8
traitlets        : 5.0.5

Python installed from python.org as an exe installer. Everything else is pip install --user

Bug opened with TensorFlow on this same issue:

tensorflow/tensorflow#46274

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions