Skip to content

84. 柱状图中最大的矩形 #22

Open
@Geekhyt

Description

@Geekhyt

原题链接

虽然这是一道难度为困难的题,不过大家不要被它所迷惑,其实它不是很难。

解决这道题,最直观的办法就是暴力求解。我们可以先来分析一波:

读题的第一遍,实际上就是要求在宽度为 1 的 n 个柱子能勾勒出来的矩形的最大面积。

这不就是个幼儿园的数学问题吗?

面积 = 底 * 高

撸它!

暴力法

方法一:双重循环遍历出所有的可能性,在遍历的过程中我们还可以求出最小的高度。

const largestRectangleArea = function(heights) {
  let maxArea = 0
  let len = heights.length
  for (let i = 0; i < len; i++) {
    let minHeight = heights[i]
    for (let j = i; j < len; j++) {
      minHeight = Math.min(minHeight, heights[j])
      maxArea = Math.max(maxArea, minHeight * (j - i + 1))
    }
  }
}

方法二:确定一根柱子后,分别向前后两个方向遍历。

const largestRectangleArea = function(heights) {
  let maxArea = 0
  let len = heights.length
  for (let i = 0; i < len; i++) {
    let left = i
    let right = i
    while (left >= 0 && heights[left] >= heights[i]) {
      left--
    }
    while (right < len && heights[right] >= heights[i]) {
      right++
    }
    maxArea = Math.max(maxArea, (right - left - 1) * heights[i])
  }
  return maxArea
}

但是这两种方法的时间复杂度都是 O(n^2),空间复杂度是 O(1)。时间复杂度太高了,我们需要想办法进行优化。

使用单调递增栈

stack0.jpg

我们来思考一个问题,我们究竟想要求的最大面积是什么?

不妨拿起笔画画图,我这里帮你画好了,观察上图,便可以得出:

其实就是以 i 为中心,分别向左、向右找到第一个小于 heighs[i] 的两个边界,也就是以当前这根 i 柱子所能勾勒出的最大面积。

那么,我们为什么要借助单调递增栈这种数据结构呢?

单调递增,也就是我们可以通过 O(1) 的时间复杂度确定柱体 i 的左边界!

又是以空间换时间的套路!

如何确定右边界?

只需遍历一次柱体数组,将大于等于当前柱体的柱子们推入栈中,而当遍历到的柱子高度小于栈顶的柱子高度时,这时我们找到了右边界,可以将栈顶的柱子,弹出栈,来计算矩形面积了!

处理特殊边界情况?

引入前后边界,在柱体数组前后各放入一根高度为 0 的柱子。这样便无需考虑栈空以及栈中还有剩余柱子的情况啦!

ok,上代码!

const largestRectangleArea = function(heights) {
  let maxArea = 0
  let stack = []
  heights.push(0)
  heights.unshift(0)
  // heights = [0, ...heights, 0] 你也可以这样写
  for (let i = 0; i < heights.length; i++) {
    while (stack.length > 0 && heights[stack[stack.length - 1]] > heights[i]) {
      maxArea = Math.max(maxArea, heights[stack.pop()] * (i - stack[stack.length - 1] - 1))
    }
    stack.push(i)
  }
  return maxArea
}
  • 时间复杂度:O(n)
  • 空间复杂度:O(n)

Metadata

Metadata

Assignees

No one assigned

    Labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions