Skip to content

Commit 048f078

Browse files
committed
Some small cleanup
1 parent 1d3fde6 commit 048f078

File tree

3 files changed

+8
-6
lines changed

3 files changed

+8
-6
lines changed

.gitignore

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,2 @@
1+
venv
2+
lsp-ai-chat.md

README.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -44,7 +44,7 @@ results = Document.vector_search("text_embedding", "some query to search against
4444

4545
### Example 2: Using mixedbread-ai/mxbai-embed-large-v1
4646

47-
This example shows how to use the `mixedbread-ai/mxbai-embed-large-v1` transformer, which has an embedding size of 512 and requires specific parameters for recall.
47+
This example shows how to use the `mixedbread-ai/mxbai-embed-large-v1` transformer, which has an embedding size of 1024 and requires specific parameters for recall.
4848

4949
```python
5050
from django.db import models
@@ -54,19 +54,19 @@ class Article(Embed):
5454
content = models.TextField()
5555
content_embedding = VectorField(
5656
field_to_embed="content",
57-
dimensions=512,
57+
dimensions=1024,
5858
transformer="mixedbread-ai/mxbai-embed-large-v1",
5959
transformer_recall_parameters={
60-
"query": "Represent this sentence for searching relevant passages: "
60+
"prompt": "Represent this sentence for searching relevant passages: "
6161
}
6262
)
6363

6464
# Searching
65-
results = Article.vector_search("content_embedding", "search query")
65+
results = Article.vector_search("content_embedding", "some query to search against")
6666
```
6767

6868
Note the differences between the two examples:
69-
1. The `dimensions` parameter is set to 384 for `intfloat/e5-small-v2` and 512 for `mixedbread-ai/mxbai-embed-large-v1`.
69+
1. The `dimensions` parameter is set to 384 for `intfloat/e5-small-v2` and 1024 for `mixedbread-ai/mxbai-embed-large-v1`.
7070
2. The `mixedbread-ai/mxbai-embed-large-v1` transformer requires additional parameters for recall, which are specified in the `transformer_recall_parameters` argument.
7171

7272
Both examples will automatically generate embeddings when instances are saved and allow for vector similarity searches using the `vector_search` method.

src/postgresml_django/main.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -61,7 +61,7 @@ def vector_search(
6161
# Generate an embedding for the text
6262
query_embedding = GenerateEmbedding(
6363
Value(query_text),
64-
"intfloat/e5-small-v2",
64+
field_instance.transformer,
6565
field_instance.transformer_recall_parameters,
6666
)
6767

0 commit comments

Comments
 (0)