Skip to content

SGD classifier can now accept 2D y values #231

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
May 22, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
62 changes: 62 additions & 0 deletions src/linear_model/LogisticRegression.test.ts
Original file line number Diff line number Diff line change
Expand Up @@ -47,6 +47,68 @@ describe('LogisticRegression', function () {
expect(results.arraySync()).toEqual([0, 0, 0, 1, 1, 1])
expect(logreg.score(X, y) > 0.5).toBe(true)
}, 30000)
it('Test of the function used with 2 classes (one hot)', async function () {
let X = [
[0, -1],
[1, 0],
[1, 1],
[1, -1],
[2, 0],
[2, 1],
[2, -1],
[3, 2],
[0, 4],
[1, 3],
[1, 4],
[1, 5],
[2, 3],
[2, 4],
[2, 5],
[3, 4]
]
let y = [
[1, 0],
[1, 0],
[1, 0],
[1, 0],
[1, 0],
[1, 0],
[1, 0],
[1, 0],
[0, 1],
[0, 1],
[0, 1],
[0, 1],
[0, 1],
[0, 1],
[0, 1],
[0, 1]
]

let Xtest = [
[0, -2],
[1, 0.5],
[1.5, -1],
[1, 4.5],
[2, 3.5],
[1.5, 5]
]

let logreg = new LogisticRegression({ penalty: 'none' })
await logreg.fit(X, y)
let probabilities = logreg.predictProba(X)
expect(probabilities instanceof tf.Tensor).toBe(true)
let results = logreg.predict(Xtest) // compute results of the training set
expect(results.arraySync()).toEqual([
[1, 0],
[1, 0],
[1, 0],
[0, 1],
[0, 1],
[0, 1]
])
expect(logreg.score(X, y) > 0.5).toBe(true)
}, 30000)
it('Test of the prediction with 3 classes', async function () {
let X = [
[0, -1],
Expand Down
30 changes: 18 additions & 12 deletions src/linear_model/SgdClassifier.ts
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,10 @@
* ==========================================================================
*/

import { convertToNumericTensor1D, convertToNumericTensor2D } from '../utils'
import {
convertToNumericTensor1D_2D,
convertToNumericTensor2D
} from '../utils'
import {
Scikit2D,
Scikit1D,
Expand All @@ -23,8 +26,7 @@ import {
Tensor2D,
Tensor,
ModelCompileArgs,
ModelFitArgs,
RecursiveArray
ModelFitArgs
} from '../types'
import { OneHotEncoder } from '../preprocessing/OneHotEncoder'
import { assert } from '../typesUtils'
Expand Down Expand Up @@ -103,6 +105,7 @@ export class SGDClassifier extends ClassifierMixin {
lossType: LossTypes
oneHot: OneHotEncoder
tf: any
isMultiOutput: boolean

constructor({
modelFitArgs,
Expand All @@ -119,6 +122,7 @@ export class SGDClassifier extends ClassifierMixin {
this.denseLayerArgs = denseLayerArgs
this.optimizerType = optimizerType
this.lossType = lossType
this.isMultiOutput = false
// Next steps: Implement "drop" mechanics for OneHotEncoder
// There is a possibility to do a drop => if_binary which would
// squash down on the number of variables that we'd have to learn
Expand Down Expand Up @@ -200,12 +204,17 @@ export class SGDClassifier extends ClassifierMixin {
* // lr model weights have been updated
*/

public async fit(X: Scikit2D, y: Scikit1D): Promise<SGDClassifier> {
public async fit(
X: Scikit2D,
y: Scikit1D | Scikit2D
): Promise<SGDClassifier> {
let XTwoD = convertToNumericTensor2D(X)
let yOneD = convertToNumericTensor1D(y)
let yOneD = convertToNumericTensor1D_2D(y)

const yTwoD = this.initializeModelForClassification(yOneD)

if (yOneD.shape.length > 1) {
this.isMultiOutput = true
}
if (this.model.layers.length === 0) {
this.initializeModel(XTwoD, yTwoD)
}
Expand Down Expand Up @@ -344,6 +353,9 @@ export class SGDClassifier extends ClassifierMixin {
public predict(X: Scikit2D): Tensor1D {
assert(this.model.layers.length > 0, 'Need to call "fit" before "predict"')
const y2D = this.predictProba(X)
if (this.isMultiOutput) {
return this.tf.oneHot(y2D.argMax(1), y2D.shape[1])
}
return this.tf.tensor1d(this.oneHot.inverseTransform(y2D))
}

Expand Down Expand Up @@ -418,10 +430,4 @@ export class SGDClassifier extends ClassifierMixin {

return intercept
}

private getModelWeight(): Promise<RecursiveArray<number>> {
return Promise.all(
this.model.getWeights().map((weight: any) => weight.array())
)
}
}
13 changes: 12 additions & 1 deletion src/mixins.ts
Original file line number Diff line number Diff line change
@@ -1,6 +1,8 @@
import { Scikit2D, Scikit1D, Tensor2D, Tensor1D } from './types'
import { r2Score, accuracyScore } from './metrics/metrics'
import { Serialize } from './simpleSerializer'
import { assert, isScikit2D } from './typesUtils'
import { convertToNumericTensor1D_2D } from './utils'
export class TransformerMixin extends Serialize {
// We assume that fit and transform exist
[x: string]: any
Expand Down Expand Up @@ -35,8 +37,17 @@ export class ClassifierMixin extends Serialize {
[x: string]: any

EstimatorType = 'classifier'
public score(X: Scikit2D, y: Scikit1D): number {
public score(X: Scikit2D, y: Scikit1D | Scikit2D): number {
const yPred = this.predict(X)
const yTrue = convertToNumericTensor1D_2D(y)
assert(
yPred.shape.length === yTrue.shape.length,
"The shape of the model output doesn't match the shape of the actual y values"
)

if (isScikit2D(y)) {
return accuracyScore(yTrue.argMax(1) as Scikit1D, yPred.argMax(1))
}
return accuracyScore(y, yPred)
}
}
Expand Down