Skip to content

Removed GPTQ pipeline class #1165

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 1 commit into from
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
45 changes: 0 additions & 45 deletions pgml-extension/src/bindings/transformers/transformers.py
Original file line number Diff line number Diff line change
Expand Up @@ -119,46 +119,6 @@ def __next__(self):
return value


class GPTQPipeline(object):
def __init__(self, model_name, **task):
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
from huggingface_hub import snapshot_download

model_path = snapshot_download(model_name)

quantized_config = BaseQuantizeConfig.from_pretrained(model_path)
self.model = AutoGPTQForCausalLM.from_quantized(
model_path, quantized_config=quantized_config, **task
)
if "use_fast_tokenizer" in task:
self.tokenizer = AutoTokenizer.from_pretrained(
model_path, use_fast=task.pop("use_fast_tokenizer")
)
else:
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
self.task = "text-generation"

def stream(self, inputs, **kwargs):
streamer = TextIteratorStreamer(self.tokenizer)
inputs = self.tokenizer(inputs, return_tensors="pt").to(self.model.device)
generation_kwargs = dict(inputs, streamer=streamer, **kwargs)
thread = Thread(target=self.model.generate, kwargs=generation_kwargs)
thread.start()
return streamer

def __call__(self, inputs, **kwargs):
outputs = []
for input in inputs:
tokens = (
self.tokenizer(input, return_tensors="pt")
.to(self.model.device)
.input_ids
)
token_ids = self.model.generate(input_ids=tokens, **kwargs)[0]
outputs.append(self.tokenizer.decode(token_ids))
return outputs


class ThreadedGeneratorIterator:
def __init__(self, output, starting_input):
self.output = output
Expand Down Expand Up @@ -294,17 +254,12 @@ def create_pipeline(task):
ensure_device(task)
convert_dtype(task)
model_name = task.get("model", None)
model_type = None
if "model_type" in task:
model_type = task["model_type"]
if model_name:
lower = model_name.lower()
else:
lower = None
if lower and ("-ggml" in lower or "-gguf" in lower):
pipe = GGMLPipeline(model_name, **task)
elif lower and "-gptq" in lower and not (model_type == "mistral" or model_type == "llama"):
pipe = GPTQPipeline(model_name, **task)
else:
try:
pipe = StandardPipeline(model_name, **task)
Expand Down